Comparison of health effects following oral exposures to PFOA and HFPO-DA (GenX) in pregnant mice

Sue Fenton, PhD
NTP Laboratory
DNTP/NIEHS

Research Triangle Environmental Health Collaborative
October 23, 2019
Developmental PFOA Exposure Sensitive Targets

• Fetal development
 – Birth weight decrements in humans and mice

• Adipose
 – Overweight if developmentally exposed
 – Insulin and glucose tolerance

• Breast/Mammary gland
 – Decreased breastfeeding duration/efficiency/ability in women and mice
 – Mammary developmental delays with no change in other pubertal timepoints (in studies that have evaluated this tissue) – permanent change in those studies that have evaluated latent effects

• Liver
 – Hepatocellular hypertrophy, lipid deposition, enlarged relative liver weight
 – Liver disease (altered enzyme levels, cancer, etc)
 – Increased mitochondrial number in developmentally exposed mice
Focused research projects under REACT: Responsive Evaluation and Assessment of Chemical Toxicity

Primary goals:

Using mice, compare GenX* to PFOA on already established sensitive endpoints

- Evaluate effects on fetal weight gain (PFOA Navigation Guide)
- Determine effects on metabolic endpoints and weight gain
- Examine puberty timing and mammary endpoints (dam and pup)
- Examine adult and developing liver for pathology and mechanisms
- Establish relationship(s) between histopathology and other endpoints
- Understand internal dose and transfer to offspring

*PFOA (Perfluorooctanoic acid ammonium salt, CAS# 3825-26-1) and GenX (Hexafluoropropylene Oxide Dimer Acid or [Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate], CAS# 62037-80-3)
Adverse Pregnancy Outcomes

Gestational weight gain (GWG) ↑
Risk pregnancy-induced hypertension ↑
Risk gestational diabetes ↑
Risk preeclampsia ↑
Gestational weight gain (GWG) ↑
Birth weight (fetal growth restriction) ↓

Evaluate PFOA concurrently with its replacement compound, GenX, for adverse effects on the maternal-placental-embryo unit in a mouse model.
Study design and experimental methods

Treatment Groups
N = 11-13 dams

- Control (water)
- 1 mg/kg/day PFOA
- 5 mg/kg/day PFOA
- 2 mg/kg/day GenX
- 10 mg/kg/day GenX

Drinking Water Standards

<table>
<thead>
<tr>
<th>Substance</th>
<th>US EPA</th>
<th>NC DHHS/DEQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td>70 ppt</td>
<td>140 ppt</td>
</tr>
<tr>
<td>GenX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- PFOA doses: selected based on previous studies
- GenX doses: selected to serve as “equivalent” doses

Clinical Chemistry, Histology & Transmission Electron Microscopy (TEM)
Cellular & Molecular Pathology Branch NIEHS

Study design and experimental methods

- Plug + E0.5 E1.5
- E11.5 E17.5
- Daily weight & dosing
- Acclimation
- Daily weight & dosing
- Sacrifice
- Sacrifice

HPLC MS-MS QQQ
Strynar Lab
US EPA

HPLC-MS/MS-ESI
Stapleton Lab
Duke University

Blake et al 2019, under review
GenX and PFOA Disposition

Treatment Groups
N = 11-13 dams
- Control (water)
- 1 mg/kg/day PFOA
- 5 mg/kg/day PFOA
- 2 mg/kg/day GenX
- 10 mg/kg/day GenX

Drinking Water Standards

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOA</td>
<td>70 (US EPA)</td>
</tr>
<tr>
<td>GenX</td>
<td>140 (NC DHSS/DEQ)</td>
</tr>
</tbody>
</table>

- PFOA doses: selected based on previous studies
- GenX doses: selected to serve as “equivalent” doses

Blake et al 2019, under review
100% of livers from dams exposed to PFOA (1 or 5 mg/kg) or GenX (2 or 10 mg/kg) showed some degree of cytoplasmic alteration.

Centrilobular hepatocellular hypertrophy with karyomegaly, increased basophilic granular cytoplasm and decreased glycogen.

A Normal liver histology & TEM at E17.5

B Arrows: prominent rough endoplasmic reticulum with abundant ribosomes

C Asterisks: evenly dispersed, abundant glycogen

D Nu = nucleolus

E N = nucleus

F K = Kupffer cell

G * = glycogen

H P = peroxisomes

I M = mitochondria

J V = vacuole

Representative images of pathology induced by PFOA or GenX at E17.5

1 mg/kg/day PFOA

2 mg/kg/day GenX

10 mg/kg/day GenX

Blake *et al* 2019, under review
Transmission electron microscopy (TEM) of liver from a control (left) and 10mg/kg/day GenX treated pregnant dam at gestation day 17.5. Note the abundance of mitochondria (M), increased vacuolation, altered rough endoplasmic reticulum (arrows) and depletion of glycogen (asterisks) in treated liver. P = peroxisomes, N = nucleus.
Liver levels of GenX and PFOA

GenX induces similar adverse maternal liver pathology as PFOA at internal liver concentrations ~10x lower

Blake et al 2019, under review
Placenta is a sensitive target of both PFOA and GenX

E17.5 estimates and 95% CI

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fetal weight (g)</th>
<th>Placental weight (mg)</th>
<th>Fetal:Placental weight ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Control</td>
<td>1378.6 (1206.3, 1550.8)</td>
<td>130.8 (109.8, 151.8)</td>
<td>11.2 (9.2, 13.3)</td>
</tr>
<tr>
<td>1 mg/kg PFOA</td>
<td>1350.7 (1091.9, 1609.4)</td>
<td>129.7 (98.2, 161.2)</td>
<td>11.1 (8.0, 14.3)</td>
</tr>
<tr>
<td>5 mg/kg PFOA</td>
<td>1249.5 (991.0, 1508.0)*</td>
<td>151.9 (120.5, 183.4)*</td>
<td>8.5 (5.4, 11.6)*</td>
</tr>
<tr>
<td>2 mg/kg GenX</td>
<td>1369.8 (1111.3, 1628.4)</td>
<td>137.1 (105.6, 168.6)</td>
<td>10.6 (7.5, 13.7)</td>
</tr>
<tr>
<td>10 mg/kg GenX</td>
<td>1337.0 (1077.5, 1596.4)</td>
<td>146.3 (114.7, 177.9)*</td>
<td>9.5 (6.4, 12.7)*</td>
</tr>
</tbody>
</table>

*Beta estimate 95% confidence intervals do not overlap zero (Mixed effect model adjusting a priori for litter size as fixed effect and the dam as random effect); N = 11-13 dams with 62-80 observations per group.

Mixed effect models fit using likelihood ratio test; model estimates with 95% CI

N = 11-13 litters with 1-3 observations per litter
Congener-specific placental lesion profiles

Early fibrin clot (D)
Labyrinth atrophy (C)
Labyrinth congestion (B)
Labyrinth necrosis (E)
Nodule (F)
Other
Normal (A)
• Similar effects of PFOA and GenX in liver, with lower GenX burden in liver

• Unique placental effects, and difference in response for fetal growth

• No sex specific differences in fetal burden of PFOA or GenX

• Mammary gland of offspring – sex specific effects
 • Pup mammary effects at 1 mg/kg GenX and 0.1 mg/kg PFOA

• Ongoing work addressing maternal mammary gland development, metabolic effects in offspring and other reproductive tissues in pups

• PFOA and GenX-induced transcriptomic pathways that are shared and unique in placenta, liver, and mammary tissue are being determined

• Future studies to address lower doses and adverse outcome pathways
Acknowledgements

Collaborators
US EPA National Exposure Research Laboratory
Mark Strynar, PhD
James McCord, PhD

Duke University
Heather Stapleton, PhD
Samantha Hall

NIEHS Cellular & Molecular Pathology Branch
Susan Elmore, PhD
Dave Malarkey, PhD DACVP

NIEHS Mouse Embryo Phenotyping Core
Beth Mahler
Brittany Scott

NIEHS Clinical Pathology Group
Debra King
Ralph Wilson

The Fenton Lab
BEVIN BLAKE
HARLIE COPE
CHARLOTTE LOVE
Vesna Chappell, PhD

Funding
T32 training grant ES007126
NIEHS NTP funded

TEM of Liver:
Robert Keys, PhD

NIEHS Biostatistics & Computational Biology Branch
Keith Shockley, PhD

NIEHS Fluorescence Microscopy and Imaging Center
Jeff Tucker, PhD