

An Industry Perspective on Understanding and Abating Organic Fluorinated Compounds

October 24, 2019

Modern Use of Fluoroproducts

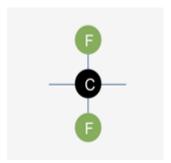
Communication

Renewable Energy

Automotive

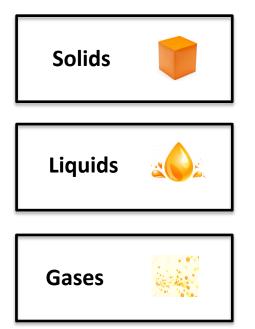
Low-GWP Refrigerants

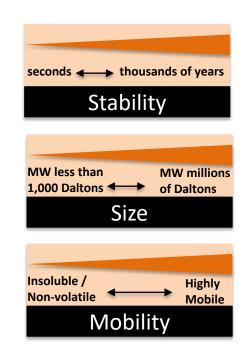
Aerospace



Per- and Polyfluoroalkyl Substances (PFAS)

Similarities

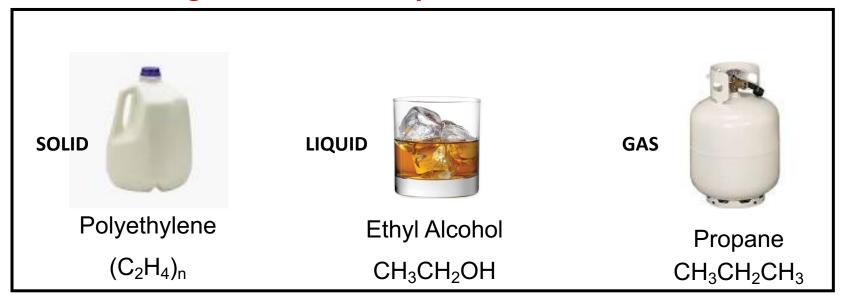



"highly fluorinated aliphatic substances that contain 1 or more C atoms on which all the H substituents have been replaced by F atoms, in such a manner that they contain the perfluoroalkyl moiety C_nF_{2n+1} —."

*IEAM **2011**, 7(4):513-541.

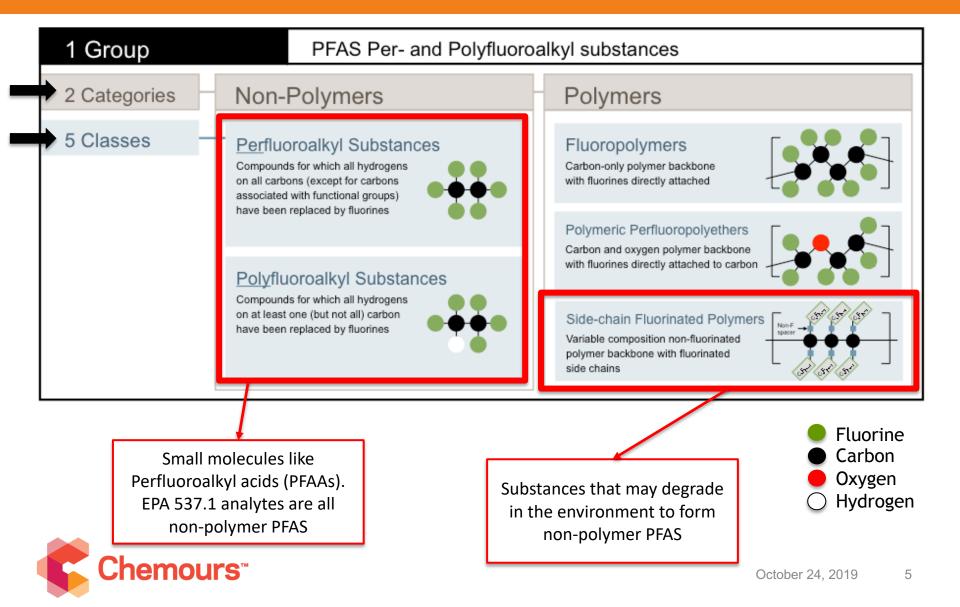
Open access: http://dx.doi.org/10.1002/ieam.258

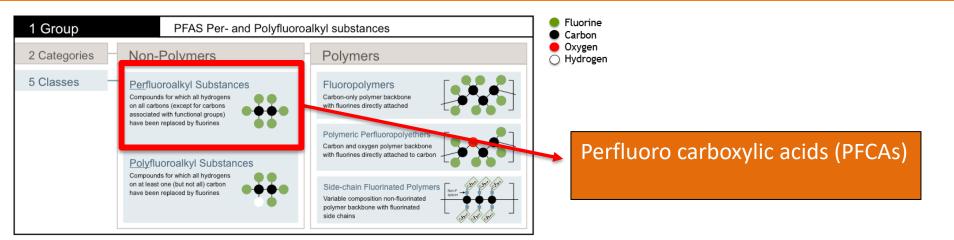
Differences



Thousands of substances with *very different* properties

Hydrocarbon Analogy

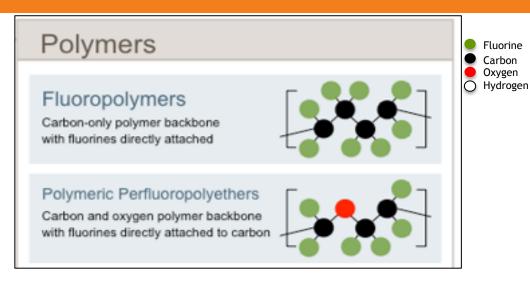

A Big Universe of Very Different Substances


The PFAS Universe is equally diverse Need to use <u>clear</u>, <u>specific</u> and <u>descriptive</u> terms

PFAS Overview

PFAS Overview – Continue to Converge

Michigan "Draft Regulations for PFAS MCL"*


8 ng/L (ppt)

400,000 ng/L (ppt)

^{*}https://www.michigan.gov/egle/0,9429,7-135-3308 3323-509830--,00.html

Polymer Category is Different

Thermal, chemical and biological stability*

High Molecular Weight;
Not bioavailable or subject to long-range transport

Fluoropolymers shown to meet OECD Polymer of Low Concern (PLC) criteria*

*IEAM **2017**, 14(3):316-334

Open access: http://dx.doi.org/10.1002/ieam.4035

Electronics

High frequency signal transmission

Medical Devices

High dielectric insulators in medical equipment that relies on high frequency signals

Aerospace/Auto

Weight reducing fuel lines; heat/chemical resistant wire coatings

Semiconductor Manufacturing

Providing pure environments to transport/store harsh chemicals

Alternative Energy

Insulation properties, durability, and safety enabling, fuel cells and solar panels

Fluoropolymer Manufacturing

Major manufacturers phased out the use of PFOA and moved to approved alternatives*.

Non-Polymers

Perfluoroalkyl Substances

Compounds for which all hydrogens on all carbons (except for carbons associated with functional groups) have been replaced by fluorines

Polyfluoroalkyl Substances

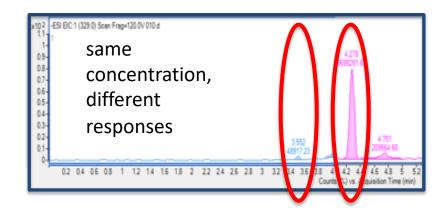
Compounds for which all hydrogens on at least one (but not all) carbon have been replaced by fluorines

HFPO-DA, CAS# 62037-80-3 F₃C-CF₂CF₂-O-CF(CF₃)-CO₂-

CAS# 908020-52-0 F₃C-CF₂-O-CF₂CF₂-O-CF₂CO₂-

ADONA, CAS# 958445-44 F₃C-O-CF₂CF₂CF₂-O-CFHCF₂-CO₂⁻¹

CAS# 329238-24-6 CIC_3F_6 -O- $[CF_2CF(CF_3)O-]_n$ - $[CF(CF_3)-O-]_m$ - CF_2 - CO_2 -

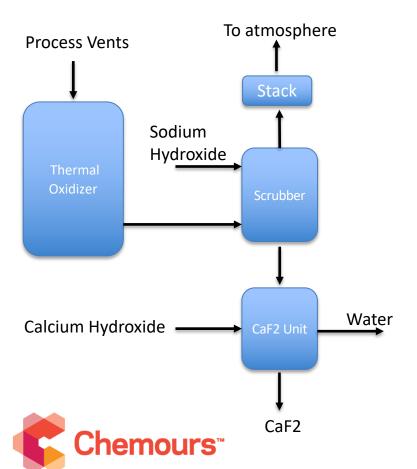

Why do we need to be specific and descriptive?
Characterizing emissions requires authentic reference standards and validated analytical methods

Advancements – Analytical Methodology

Reliable, validated, reproducible analytical methods are <u>essential</u> to be able to make sound, fact-based decisions

- Instrumentation non-targeted and targeted analysis
- Authentic reference standards
- Method development

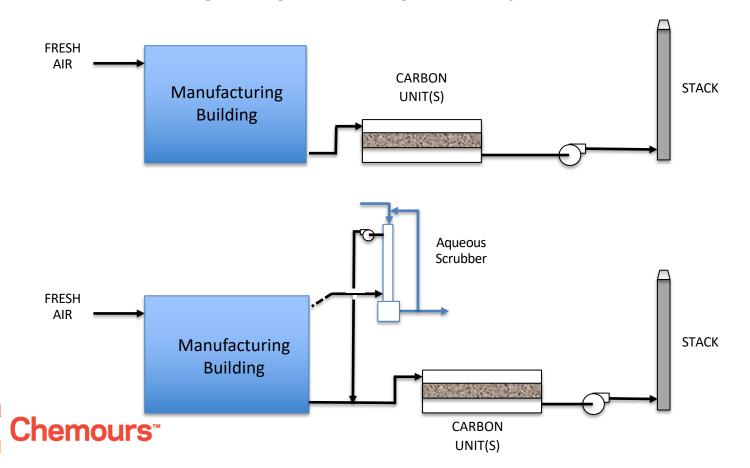
In order to accurately *identify* compounds and determine *concentrations*, authentic reference standards are required.


Recent Advancements

- Analytical detection capability
- Sampling stack testing methods for non-polymer PFAS
- Significant baseline emissions and abatement technology research with low detection capability.
- Progress towards our 2030 Corporate Responsibility Commitment

Abatement Technology - Vapor

- Concentrated Vapor Thermal Oxidizer
 - Inputs mixed with oxygen at high temperatures to oxidize fluorinated organic compounds. 99.99% destruction capability.



Abatement Technology - Vapor

Dilute Vapor

 Adsorption utilizing granular activated carbon (GAC) for higher molecular weight, higher boiling non-polymer PFAS.

Abatement Technology - Aqueous

- Adsorption (GAC) and ion exchange.
 - Used in both process water and finished product applications.
- Significant research ongoing
 - Thermolysis for more concentrated aqueous streams
 - Have tested several types of adsorbents and ion exchange resins vs non-polymer PFAS compounds.
 - Researching combinations of technologies that ultimately enable recycle of process water internal to the manufacturing facilities.

Our 2030 Corporate Responsibility Commitment

Inspired People

Safety Excellence

 Improve employee, contractor, process, and distribution safety performance by at least 75%.

Vibrant Communities

 Invest \$50M in our communities to increase access to STEM skills and improve lives through environment and safety programs.

Empowered Employees

- 50% of all positions globally filled with women.
- 20% of all US positions filled with ethnically diverse employees.

Shared Planet

Climate

- Reduce greenhouse gas emission intensity by 60%.
- Progress our plan to become carbon positive by 2050.

Water

 Reduce air and water process emissions of fluorinated organic chemicals by 99% or greater.

Waste

 Reduce landfill volume intensity by 70%.

Evolved Portfolio

Sustainable Offerings

 50% or more of our revenues will be from solutions that make a specific contribution to the 2030 United Nations Sustainable Development Goals.

Sustainable Supply Chain

 Baseline the sustainability performance of 80% of suppliers by spend and demonstrate 15% improvement.

