Bioaccumulation & Impacts of Novel & Legacy PFAS in Wildlife of Coastal North Carolina

Scott Belcher, PhD North Carolina State University

Acknowledgements:

Belcher Lab: Theresa Guillette, PhD Matt Guillette Madi Polera Thomas Jackson

> Helen Nguyen Chris Scheibly Gabe Bendfeldt Aubrey Sasser

VORTH CAROLINA

- Mark Strynar, PhD
- James McCord, PhD

- Alicia Davis
- Kyle Rachels
- Clint Morgenson

Studies of Alligator and Fish Exposure

The BIG Questions:

- Are PFASs present and accumulating in NC wildlife?
 - Which ones and for how long?
 - Do "replacement" PFAS bioaccumulate?
- Are the levels found associated with indicators of adverse wildlife/ecosystems health?
- What can this tell us about effects on humans?

The Concept of <u>One Health</u>:

Studies in <u>sentinel species</u> can act as an early warning of environmental problems that are impacting humans

Sentinel Species Bioconcentration, Bioaccumulation, Biomagnification

Biomagnification

Contaminant is eliminated much slower than it is absorbed

PFAS are bioaccumulating in aquatic vertebrates living in contaminated waters

Bioconcentration/Bioaccumulation

- PFAS in Cape Fear River Water = ppt
- Blood of Fish and Alligator = ppb-ppm

Alligator: Study Approach

Studies of Alligator and Fish Exposure

Approach:

- Active capture adult alligators (6 foot +) and Juvenile
 - Sample: Blood/Serum Morphometric measures Determine sex
- Quantitate serum PFAS levels (LC/MS/MS)
- Blood chemistry/hormones/liver enzymes
- Immune function: lysozyme and immune cell counts
- 1) Identify a reference population
 - Lake Waccamaw (Lumber River watershed)
 - Compare Cape Fear & Wilmington Area
 - Greenfield Lake

Preliminary Findings:

- Increased serum PFAS are found in Cape Fear River alligators (and fish)
- Higher contamination levels increases in unhealed "lesions" and poor body condition
- Site-specific differences in immune function, liver enzymes, and blood chemistry

Analysis is ongoing.....

Lymphocytes

Striped Bass: Morone saxatilis

Commercial and recreational fishery in North Carolina valued at more than **\$94 million annually**

Striped Bass: can live in both salt and fresh water

- Cape Fear River Population Do not migrate
 - riverine/estuarine
 - good model of Cape Fear contaminants
- <u>No natural reproduction in the Cape Fear River</u>
- Tar/Pamlico, Neuse and Cape Fear Rivers:
 - Essentially 100% are hatchery progeny
 - Analyzed fish were between ~2-7 year old
 - Residents of the Cape Fear River from 1-6 years

Approach:

- Targeted and untargeted high-resolution mass spectrometry of blood
 - Measure known (> 23)
 - Detect unknown PFAS
- Blood chemistry and health-related biomarkers
 - Liver
 - Kidney
 - Immune system
 - Hormones
- Regression analysis to detect associations between total and individual PFAS concentrations and health endpoints

Striped Bass Serum Samples – Preliminary Findings

- PFAS was detected in every sample
- PFOS, PFNA, PFDA was detected in every Striped Bass
- Nafion bp2 was only detected in Cape Fear samples
- GenX and PFHxS are enriched in Cape Fear samples
- PFBS was detected in PAFL and not Cape Fear Striped Bass

PFAS in Cape Fear Striped Bass Serum

- GenX was detected in half the samples
- Nation BP 2 was detectable in 78% of samples

PFAS in Striped Bass Serum

• Total PFAS is >40 higher in Striped Bass from the Cape Fear River

PFOS accounted for 89% of PFAS present in serum of Striped Bass from the Cape Fear River

PFAS exposures in Striped Bass are associated with liver and immune function changes

Comparison of liver enzyme activity and immune enzyme activity

With regression analysis found:

Enzyme concentrations are increased with increasing PFAS

PFAS in Striped Bass Serum: Bioaccumulation is very complicated

In striped bass PFAS bioaccumulation is not a simple analogy to POPS or toxic metals

There is a major need to understand fundamental toxicokinetic properties of PFAS

PFAS:

- Can be both polar and hydrophobic
- Can bind proteins (albumin, FABP)
- Accumulate in highly perfused tissues
- Some may bind phospholipids
- Affinity of individual PFAS to serum proteins

A Novel HT PFAS Albumin Binding Assay

Temperature

- Hydrophobic dye binding sites sequestered in folded protein
- Denatured protein dye binding sites exposed
- Measure fluorescence (497nm) increase to calculate Tm

A Novel HT PFAS Albumin Binding Assay

- Hydrophobic dye binding sites sequestered in folded protein
- Denatured protein hydrophobic dye binding sites exposed
- Measure fluorescence increase to calculate Tm

- Bound ligand increases protein stability
- Compare impact of increasing concentrations of ligand/PFAS on Tm (ΔTm)

A Novel HT PFAS Albumin Binding Assay - proof of concept -

Concentration Response

College of Sciences

NC STATE UNIVERSITY

Question 1:

What physiochemical information is necessary to better characterize the fate and transport of individual or groups of PFAS?

Question 2:

What physiochemical information is necessary to better characterize the potential for individual or groups of PFAS to have adverse effects?